Evolution of EDF ageing management in the frame of LTO

NRG Conference LTO Amsterdam

MANDA ALA TAMATAN

NRG CONFERENCE LTO

May 2022

AMANDA



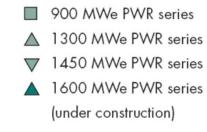
## Contents

- **1.** French Nuclear Fleet Specific Context
- 2. Ageing Management in the frame of LTO
  - Ageing Management process (corporate / plant levels)
  - Benchmark with IAEA standards
- 3. R&D program to support LTO: example of 2 major activities
  - Sherlock
  - Vercors
- 4. Conclusion

# FRENCH NUCLEAR FLEET SPECIFIC CONTEXT



## French Nuclear Fleet specific context




#### > 56 reactors in operation

- ✓ 18 sites
- ✓ Capacity : 61,4 GWe

#### ✓+ 1 reactor under construction

✓ FLA 3, 1600 MWe EPR



## **French Nuclear Fleet specific context**

AGE PYRAMID of the French NPP reactors (French NPP fleet as at end 2016; by date of first criticality; power per reactor)

Date of 1st criticality

Global power

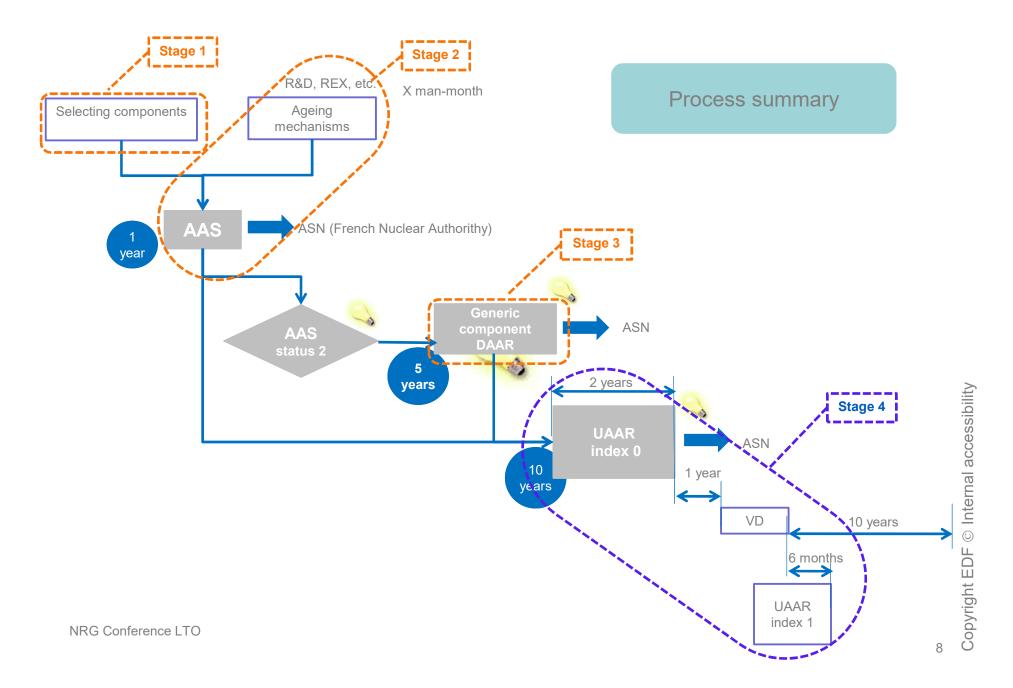
| 1978 | Bugn 2      | Rigny 3        |            |              |             |                                       |                                         |                                       | 1,800 INWe |
|------|-------------|----------------|------------|--------------|-------------|---------------------------------------|-----------------------------------------|---------------------------------------|------------|
| 1979 | Bagay 4     | Bogry S        |            |              |             |                                       |                                         |                                       | 1,800 MWe  |
| 1980 | Treastir 1  | Gravelines 1   | livestin 2 | Trinstin 8   | Gaulium 2   | Dempierre 1                           | Gravitants 3                            | Stimlacort B1                         | 7,200 INWe |
| 1981 | Bompierre 2 | SoleKourent 67 | Bioyets 1  | Sampione 3   | Tricestin 4 | Grawitines 4                          | Rompirens 4                             |                                       | 6,300 IAWe |
| 1982 | alayois 2   | Clinne & 1     |            |              |             |                                       |                                         |                                       | 1,800 MWe  |
| 1983 | Erops T     | Binysis 4      | Blayers 3  | Eliion 82    |             |                                       |                                         |                                       | 3,600 MWa  |
| 1984 | Crues 3     | Feloel 1       | £          | nus 2        | Paluel 2    | Genelines 5                           | Erues 4                                 |                                       | 6,200 MWe  |
| 1985 | SointAbo    | t i            | Felgel 3   | Gravelinas A | Tenoralia 1 | 1                                     | -                                       |                                       | 4,800 MWa  |
| 1986 | Poinuel 4   | 56             | astAlban Z | Figure 1     | 2 Onior     | 63 Gath                               | nun I-                                  |                                       | 6,100 MWa  |
| 1987 | Cotteners   | 2 1            | logent T   | Scievile     | l Chinao    | 84                                    |                                         |                                       | 4,800 INWe |
| 1988 | Balleville  | 20 1           | logent 2   |              |             | 100                                   |                                         |                                       | 2,600 INWa |
| 1990 | Catterium   | 3              | Pinig 1    | Gallech      |             |                                       |                                         |                                       | 3,900 IMWe |
| 1991 | Cottepara   | (4.)           |            |              |             |                                       |                                         |                                       | 1,300 IMWe |
| 1992 | Penty 2     | 8              |            |              |             |                                       |                                         |                                       | 1,300 MWe  |
| 1993 | Gallech     | 2              |            |              |             |                                       | e age of l                              |                                       | 1,300 MWs  |
| 1996 | Chaoz       | 81             |            |              |             | <u>56 react</u>                       | ors in ope                              | eration                               | 1,450 MWe  |
| 1997 | Choos       | 82             | Civeux 1   |              |             |                                       | ars (900 M                              | · · · · · · · · · · · · · · · · · · · | 2,900 MWa  |
| 1999 | Civitu      | ÷7             |            |              |             | · · · · · · · · · · · · · · · · · · · | i <mark>rs (1300 N</mark><br>s (1450 MV | · · · · · · · · · · · · · · · · · · · | 1,450 MWa  |

NRG Conference LTO

# 2

## Ageing Management in the frame of LTO




#### **Description of the Ageing Management process**

The process of ageing management relies on 4 key stages:

- 1. Selection of systems, structures and components (SSC) sensitive to ageing
- 2. Examination of all couples SSC /ageing mechanism: Ageing Analysis Sheet (AAS)
- 3. Detailed Ageing Analysis Report (DAAR) for most sensitive SSCs
- 4. Establishing a Unit Ageing Analysis Report (UAAR) valid for the decade following the 10 years outage of each unit

Stages 1 to 3 completed at corporate level per plant series (900/1300 MW).

Stage 4 completed by the plant and specific to the unit.



#### Identification of SSC sensitive to ageing, per plant series at corporate level

- > IPS : SSCs important to safety
- Non-IPS SSCs whose failure may prevent SSCs important to safety from fulfilling their intended functions
- Non-IPS SSCs which, with respect to the PSA make a significant contribution to limiting the core melt risk
- **EIPR : SSCs important for conventional risks protection (for LTO)** 
  - Elements whose failure would have consequences for functions related to non-radiological accidents (containment of dangerous substances, protection of people/environment against effects of dangerous phenomena)
  - Example : ultimate sump

#### EIPI : SSCs Important for protection from inconveniences (for LTO)

- Elements whose failure would have consequences for the functions related to inconveniences (health impacts, environmental impacts)
- Example : rejection flow control valve, flow meter, pumps, chemical and/or radioactive liquid rejections

#### Other SSCs that are credited in the safety analyses (deterministic/probabilistic) as performing the function of coping with certain types of events (for LTO)

- SSCs needed to cope with internal events: internal fire and internal flooding;
- SSCs needed to cope with external hazards : earthquake, external flooding, and external fire

# AAS review per plant series by corporate operating and engineering departments

- > AAS drafted for each couple SSC / ageing mechanism (potential or proven)
  - gives an **overview** of SSCs ageing management.
  - used to control ageing management in the light of OPEX, maintenance/ISI/surveillance provisions, repairability and replaceability
  - reviewed every year and, if necessary, updated.

#### > Input data

- development of maintenance, ISI, surveillance programs, processing of obsolescence
- analysis of events from national and international OPEX
- R&D activities, incorporating experience feedback from collaboration and international exchanges: IAEA, EPRI, OECD, WANO, other utilities, etc.
- comments from Units, particularly NPP performing their UAAR

### > Ageing management documents issued at corporate level

- Maintenance / ISI / surveillance programs issued by corporate operating department per plant series
- TLAA issued by corporate engineering department per plant series

### Benchmark with IAEA standards

- Modification of AAS template because the EDF document structure is different from that of IAEA
  - to comply as closed as possible to AMP structure
  - to integrate AMP attributes
  - to become an AMP summary identifying documents relative to the attributes
- Benchmark with IGALL AMR to check completeness of EDF scoping
- Identification to TLAA equivalent documents (6 criteria of a TLAA not always specified)

## **Stage 2: Ageing Analysis Sheet**

|         | FICHE-D'ANALYSE-DE-VIEILLISSEMENT¶       |       |                        |                      |          |                         |        | N°·Fiche°:¤                                                 | XXX-YY-ZZ      |                |     | Z        |
|---------|------------------------------------------|-------|------------------------|----------------------|----------|-------------------------|--------|-------------------------------------------------------------|----------------|----------------|-----|----------|
|         |                                          | •     | Indice <sup>®</sup> :# | Index¤               |          |                         |        |                                                             |                |                |     |          |
|         | A                                        | GE    | ING·ANALIS             | Date <sup>®</sup> .# | Date¤    |                         |        |                                                             |                |                |     |          |
|         |                                          |       |                        |                      |          |                         |        | Référence-base-de-<br>connaissance¤                         | and the second | hani:<br>apcov |     |          |
| DIP*¤   | Rédacteur∞                               | Rec   | lactor's name 1¤       | Unité¤               | Unit¤    | Vérifica                | ateur∝ | Controller's-name-1¤                                        | Unités         | Unit¤          | t   |          |
| DPN¤    | Rédacteur∞                               | Rec   | lactor's name 2¤       | Unité¤               | Unit¤    | Vérifica                | ateur∞ | Controller's name 2#                                        | Unités         | Unit¤          | t i |          |
| Palier( | s)·/·Tranche(                            | s)¤   | Serie (900 or 1        | 300)-or-             | specific | NPP¤                    |        |                                                             |                |                |     |          |
| Compo   | sant-/-struct                            | ure¤  | SSC (System /          | Structu              | re-/-Con | nponent)¤               |        |                                                             |                |                |     |          |
| Éléme   | nt·/·zone¤                               | 1     | Location¤              |                      |          |                         |        |                                                             |                |                |     |          |
| Mécan   | isme¤                                    |       | Acronyme¤ (            | acronym              | ¤ Méc    | anisme¤ 🗸               | Ageing | ∙mechanism¤                                                 |                |                |     |          |
| Evolut  | ions∙des∙tro                             | is∙de | →<br>erniers∙indices   |                      | -        | Coche                   |        | her·s'il-y·a·changement-de-r<br>y-a-évolution-des-données-a |                | ogie-¶         | +   | ļ        |
| Indice  | Indice Date Motif·du·changement·d'indice |       |                        |                      |          | Modifications apportées | •      |                                                             | =              | =              |     |          |
|         |                                          |       | 8                      |                      |          |                         |        |                                                             |                |                | =   |          |
| -       | -                                        |       |                        |                      |          | -                       |        |                                                             |                |                | -   | II<br>Ve |
| •       |                                          |       |                        |                      |          | •                       |        |                                                             |                | 100            |     | X¤       |

### Ageing mechanism knowledge basis = Capcov basis EDF basis about ageing mechanism, isued at corporate level by R&D Department

| Analysis                                           | Answer / Justification / Comment                                                                                                                                                                                                                                                                                                                                                                     | Reference                   |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Safety class                                       | Safety class                                                                                                                                                                                                                                                                                                                                                                                         | Document                    |
| Description of the ageing<br>mechanism             | Description of the ageing mechanism                                                                                                                                                                                                                                                                                                                                                                  | references for each<br>item |
| Material / environment                             | Material / environment                                                                                                                                                                                                                                                                                                                                                                               |                             |
| Associated ageing effects                          | Associated ageing effects                                                                                                                                                                                                                                                                                                                                                                            |                             |
| Design provisions to minimize ageing effects       | <u>Design_provisions</u> to minimize ageing effects                                                                                                                                                                                                                                                                                                                                                  | 5 7                         |
| Justified operation period (TLAA notion)           | Justified operation period (TLAA notion)                                                                                                                                                                                                                                                                                                                                                             | $\vee$                      |
| Proven mechanism / OPEX / proven<br>ageing effects | Yes/no<br><b>"Yes":</b> if the ageing mechanism <u>and/or</u> associated<br>damages are <u>proven</u> ( <u>i.e.</u> recorded in a French NPP<br>or in a foreign similar PWR plant)<br><b>"No":</b> if the ageing mechanism and associated<br>damages are potential<br><b>"Irrelevant":</b> if the ageing mechanism is irrelevant for<br>the considered SSC in the considered operation<br>conditions |                             |
|                                                    | Description of the ageing mechanism and/or effects in<br>OPEX / occurrence                                                                                                                                                                                                                                                                                                                           |                             |

| Analysis                                                                                                      | Answer / Justification / Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Operating and maintenance<br>provisions<br>In-service inspection / surveillance /<br>water chemistry programs | Appropriate / Improvable / Difficult to improve<br><i>Current operation / maintenance / in-service</i><br><i>inspection / monitoring actions:</i><br><b>"Appropriate":</b> <i>if these actions enable the detection</i><br><i>and treatment of the damages</i><br><b>"Improvable":</b> <i>if it is possible to implement</i><br><i>modifications of the existing actions or additional</i><br><i>actions to make them more appropriate for the target</i><br><i>date.</i><br><i>If it is not possible, the operations and maintenance</i><br><i>actions are considered "difficult to improve"</i> |           |
|                                                                                                               | Description of the actions performed to manage SSC<br>ageing (maintenance, monitoring, in-service<br>inspection, periodic testing, diagnostics, replacement<br>programs)                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| Mitigation actions                                                                                            | Mitigation actions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Acceptance criteria                                                                                           | Acceptance criteria for continued operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |

| Repairability of the SSC  | Description of repair activities                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Implementation difficulty | Low / Medium / High<br><b>"Low difficulty":</b> if a procedure already exists or<br>would be easy to design and to implement, without<br>complex qualification, with good accessibility<br>conditions and significant chances of success                                                                                                                                                                                                           |  |  |  |
|                           | <ul> <li>"High difficulty": if the procedure is not available and its development requires significant anticipation because: <ul> <li>its creation or implementation is complex,</li> <li>or it requires a long, or never realized qualification,</li> <li>or accessibility is difficult,</li> <li>or the chances of success without anomaly are difficult to guarantee.</li> </ul> </li> <li>"Medium difficulty": neither low nor high</li> </ul> |  |  |  |
| Obsolescence risk         | Obsolescence risk                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

| Replaceability of the SSC       | Replace                                                                                                                                                                                                                                                                                                                                                                                      | eability of the SSC                                                                                                                                                                                                                                                                                                        |                                                                                                                          |     |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| Implementation difficulty       | <b>"Low o</b><br>would k<br>significa<br>design o<br>good ad                                                                                                                                                                                                                                                                                                                                 | Low / Medium / High<br>"Low difficulty": if a procedure already exists or<br>would be easy to design and to implement, without<br>significant questioning of the safety report or existing<br>design documents, without complex qualification, with<br>good accessibility conditions and significant chances<br>of success |                                                                                                                          |     |  |  |  |
|                                 | <ul> <li>"High difficulty": if the procedure is not available and its development requires significant anticipation because: <ul> <li>its creation or implementation is complex,</li> <li>or it requires a long, never realized qualification,</li> <li>or accessibility is difficult,</li> <li>or the chances of success without anomaly are difficult to guarantee.</li> </ul> </li> </ul> |                                                                                                                                                                                                                                                                                                                            |                                                                                                                          |     |  |  |  |
|                                 | "Mediu                                                                                                                                                                                                                                                                                                                                                                                       | m difficulty": neith                                                                                                                                                                                                                                                                                                       | ner low nor high                                                                                                         |     |  |  |  |
| Obsolescence risk               | Obsoles                                                                                                                                                                                                                                                                                                                                                                                      | scence risk                                                                                                                                                                                                                                                                                                                |                                                                                                                          |     |  |  |  |
| Status                          | (*)                                                                                                                                                                                                                                                                                                                                                                                          | Justification                                                                                                                                                                                                                                                                                                              | Justification: if the proposed status is different<br>from the one determined by the grid of the<br>methodological guide | ənt |  |  |  |
| Further actions (status 1 or 2) | Further                                                                                                                                                                                                                                                                                                                                                                                      | Further actions to implement to demonstrate ageing management                                                                                                                                                                                                                                                              |                                                                                                                          |     |  |  |  |

## **Ageing Analysis Sheet:** status determination

| STATUS                                                                   | Ageing m    | echanism : <b>P</b> | roven                | Ageing mechanism <b>Potential</b> |            |                      |
|--------------------------------------------------------------------------|-------------|---------------------|----------------------|-----------------------------------|------------|----------------------|
| Operations and maintenance actions                                       | Appropriate | Improvable          | Difficult to improve | Appropriate                       | Improvable | Difficult to improve |
| Reparability <u>AND</u><br>replaceability : "High<br>difficulty"         | 2           | 2                   | 2                    | 0                                 | 1          | 2                    |
| Reparability <u>OR</u><br>replaceability : "Low<br>or Medium difficulty" | 0           | 1                   | 2                    | 0                                 | 1          | 1                    |

- 0 : Ageing controlled  $\rightarrow$  no further actions
- 1: Complementary actions needed to confirm aging management
- 2 : Production of a DAAR

## Ageing Management Process: Stage 3 DAAR

#### DAAR issued per plant series by corporate operating and engineering departments

- To deepen the analysis of operating aptitude of one (or several) SCC for which one (or several) AAS are in status 2
- To identify, if necessary, additional studies, R&D programs, maintenance / repair / replacement programs to be developed.

#### **DAAR** content:

- Design provisions : regulations, codes & standards, specifications, design rules, safety functions
- Description and OPEX: design, materials, manufacturing processes, water chemistry, operating conditions and feedback
- Ageing mechanisms : scientific knowledge, acceptance criteria, mitigation, maintenance, in-service inspection and monitoring
- > Industrial capacities : repair, replacement, obsolescence
- Conclusion on the ability of the component to continue its operation : complementary ageing management program, including maintenance ,ISI, modification, operating conditions, R&D actions.

#### DAAR reviewed every 5 years ( $\pm$ 1 year)

### Stage 3: DAAR (Detailed Ageing Analysis Report)

#### 500 AAS for 900 MW serie

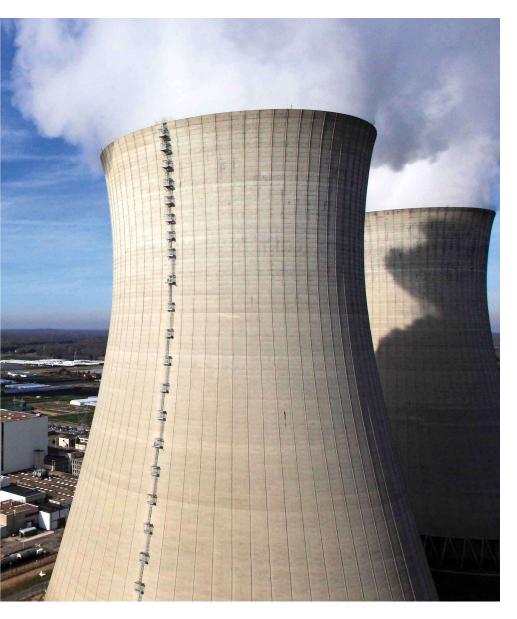
including

7 in status 1 31 in status 2

#### 11 DAAR

Reactor Pressure Vessel RPV Internals Pressurizer Steam Generator GMPP (primary pumps) Primary pipes Cables Electrical penetrations I&C Containment building

#### Stage 4: Unit Ageing Analysis Report (UAAR)


#### **UAAR** issued every 10 years by NPP with corporate operation department support Objective of the UAAR:

- Analysis of the plant situation about ageing management based on the analysis of AAS / DAAR
  - identification of design specificities, manufacturing and operating elements not taken into account by generic documents
  - Inspections results, deviation sheets, OPEX
  - verification of implementation of corporate AMPs specified in AAS, if necessary implementation of local AMPs (PLMPs)
- Integration of unit specificities (SSCs, modifications....)
- Issuance of its specific plant ageing management program (PLMV) for the ten-year period associated with this outage = complement to UAAR
  - application of current operating and maintenance rules prescribed at corporate and local levels,
  - mitigation measures identified by the NPP during AAS analysis
  - specific actions to complement corporate ageing management: local AMPs, SSC replacement...
  - site particularities related to maintenance, design, operation: about 1% of total ageing management

## Updated in the 6 months following the ten-years outage, completed by the results of the examinations and works performed during the outage.

# 3

R&D program to support LTO: example of 2 major projects



## **Sherlock Project**

## Examinamination of SG n° 2 of Cruas Uni

- Cruas 4: 900 MWe
- ~30 (calendar) years of operation
- ~ 206 000 h Effective Full Power
- SG design: Areva 51B
- River water coolant
- SG removed from reactor building in April 2014
- SG is now in horizontal position in a storage building on Cruas site

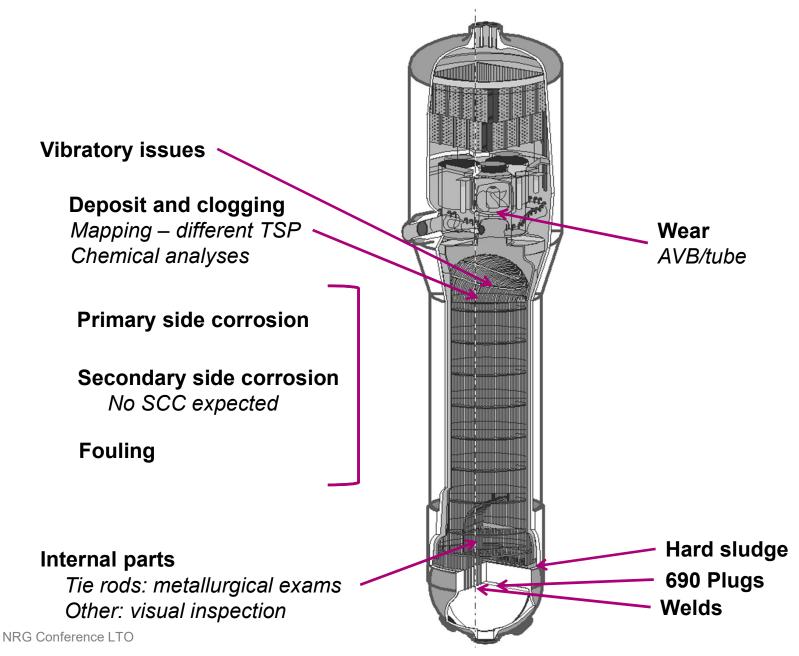




## **Sherlock Project**

#### > Objective:

To improve understanding of SG ageing mechanisms


#### Project is a 10-year program of activities, in two phases

- > Phase 1: NDT (ECT and VT), Decontamination, Specimen sampling
- Phase 2: Laboratory Examinations

#### > Specimen removals performed in an on-site storage building

- Removed SG samples (i.e., tubes, deposits, supports, etc.) will be examined in EDF's off-site corporate hot laboratories
- > Investigations in hot laboratories: end of 2022  $\rightarrow$  at least 2024

## **Sherlock Project: scope**



## **Vercors PROJECT**

VeRCoRs: Vérification Réaliste du Confinement des Réacteurs

#### **Realistic Verification of Reactor Confinement Building**

**1/3 scaled** PWR containment building

#### **EDF Target :**

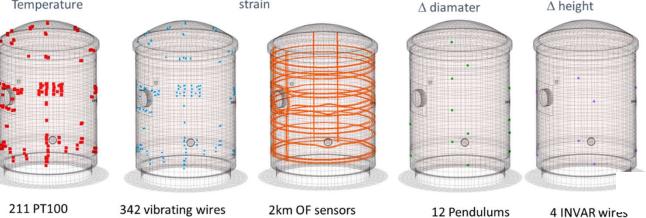
- Increase understanding of prestressed concrete ageing
- Demonstrate EDF installation robustness
- Identify more precisely sensitive areas of reactor building














## Vercors

## An important monitoring effort

| Measured           | Sensor           | VeRCoRs    | EDF      |
|--------------------|------------------|------------|----------|
| variable           | type             | mock-up    | fleet    |
| temperature        | PT100 probes     | >200       | 30       |
| strain             | vibrating wires  | >300       | 50       |
| diameter variation | plumb-lines      | 4          | 4        |
| length variation   | invar wires      | 4          | 4        |
| rebar strain       | strain gages     | 80         | -        |
| water content      | TDR              | 20         | -        |
| water content      | Pulse            | 20         | -        |
| strain+temperature | optic fiber (OF) | 2km        | -        |
| Temperature        | strain           | A diamator | A height |



NRG Conference LTO

## Vercors

### Main objectives for ageing management:

- Better understandind of ageing phenomena
  - Loss of prestressing
  - Drying
  - Creep and shrinkage
- Better understanding of leakage phenomena
- Improvement of FEM
- Measurement improvement
  - Optical fiber
  - Detection of cracking (depth and opening)
  - Leakage detection
  - New device and new NDE assessement



## **Ageing Management Process in the frame of LTO**

## Conclusion

- EDF ageing Management Process performed at corporate and plant levels
- The majority of activities are defined at corporate level
- Ageing management process evolution with benchmarks
- LTO supported by an important R&D program